A Fully Implicit Kinetic Electromagnetic Model for Magnetically Confined Fusion Plasma Simulations

Benjamin Sturdevant* bsturdev@pppl.gov

S. Ku*, C-S Chang*, R. Hager*, L. Chacón†, G. Chen†

*Princeton Plasma Physics Laboratory, †Los Alamos National Laboratory

19th Copper Mountain Conference March 28, 2019

Outline:

1 Background

2 Fully Implicit Particle-in-Cell

3 Fluid Preconditioner Model

Outline:

1 Background

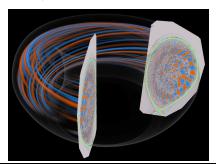
- 2 Fully Implicit Particle-in-Cell
- 3 Fluid Preconditioner Model

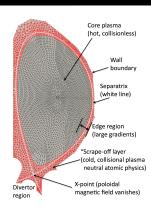
Background

XGC and Magnetic Confinement Fusion

PPPL
PRINCETON
PLASMA PHYSICS
LABORATORY

- Approach to fusion energy in which a hot (100 million + degree) fuel, in form of plasma, is confined by strong magnetic fields
- Tokamak uses twisted magnetic fields wrapped around toroidal surfaces
- XGC is a comprehensive gyrokinetic particle-in-cell code for simulating fusion relevant plamsas confined in toroidal magnetic fields



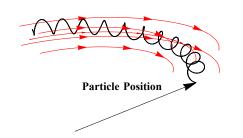


Background

Electromagnetic Gyrokinetics

- MHD/fluid type electromagnetic modes are important in magnetically confined fusion devices (e.g. edge localized modes, sawtooth oscillations, Alfvén eigenmodes, etc.)
- ► Important effects may be missing from fluid models (e.g. trapped particle effects, wave-particle interactions, finite Larmor radius effects, etc.)
- ► Characteristic frequencies of modes of interest are smaller than the gyrofrequency → gyrokinetic ions, drift kinetic electrons
- ▶ There are known numerical difficulties, however, associated with electromagnetic gyrokinetic PIC (cancellation problem for p_{\parallel} , inductive component of electric field for v_{\parallel})
- ► A fully implicit PIC method can mitigate these issues, however, we need an efficient way to invert the resulting system of nonlinear equations at each time step to make this practical.

Particle Motion in a Magnetic Field



- Gyration perpendicular to B
- Streaming parallel to B
- Well defined "Guiding Center"

$$\mathbf{X} = \mathbf{x} - \frac{\mathbf{b} \times \mathbf{v}}{\Omega_{\alpha}}$$

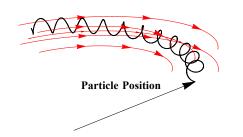
Parameters of Gyromotion

Gyrofrequency: $\Omega_{\alpha} = q_{\alpha} |\mathbf{B}|/m_{\alpha}$,

Gyroradius (Larmor): $\rho_{\alpha} = v_{\perp}/\Omega_{\alpha}$

- Possible to reduce dynamics
- Treat gyrating particles as drifting charged rings

Particle Motion in a Magnetic Field



- Gyration perpendicular to B
- Streaming parallel to B
- Well defined "Guiding Center"

$$\mathbf{X} = \mathbf{x} - \frac{\hat{\mathbf{b}} \times \mathbf{v}}{\Omega_{\alpha}}$$

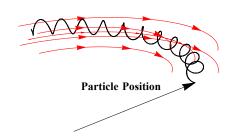
Parameters of Gyromotion

Gyrofrequency: $\Omega_{\alpha} = q_{\alpha} |\mathbf{B}|/m_{\alpha}$,

Gyroradius (Larmor): $\rho_{\alpha} = v_{\perp}/\Omega_{\alpha}$

- Possible to reduce dynamics
- Treat gyrating particles as drifting charged rings

Particle Motion in a Magnetic Field



- Gyration perpendicular to B
- Streaming parallel to B
- Well defined "Guiding Center"

$$\mathbf{X} = \mathbf{x} - \frac{\hat{\mathbf{b}} \times \mathbf{v}}{\Omega_{\alpha}}$$

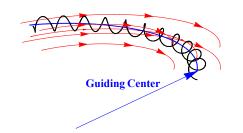
Parameters of Gyromotion

Gyrofrequency: $\Omega_{\alpha} = q_{\alpha} |\mathbf{B}|/m_{\alpha}$,

Gyroradius (Larmor): $\rho_{\alpha} = v_{\perp}/\Omega_{\alpha}$

- Possible to reduce dynamics
- Treat gyrating particles as drifting charged rings

Particle Motion in a Magnetic Field



- Gyration perpendicular to B
- Streaming parallel to B
- Well defined "Guiding Center"

$$\mathbf{X} = \mathbf{x} - \frac{\hat{\mathbf{b}} \times \mathbf{v}}{\Omega_{\alpha}}$$

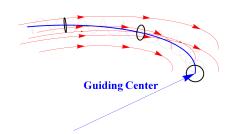
Parameters of Gyromotion

Gyrofrequency: $\Omega_{\alpha} = q_{\alpha} |\mathbf{B}| / m_{\alpha}$,

Gyroradius (Larmor): $\rho_{\alpha} = v_{\perp}/\Omega_{\alpha}$

- Possible to reduce dynamics
- Treat gyrating particles as drifting charged rings

Particle Motion in a Magnetic Field



- Gyration perpendicular to B
- Streaming parallel to B
- Well defined "Guiding Center"

$$\mathbf{X} = \mathbf{x} - \frac{\hat{\mathbf{b}} \times \mathbf{v}}{\Omega_{\alpha}}$$

Parameters of Gyromotion

Gyrofrequency: $\Omega_{\alpha} = q_{\alpha} |\mathbf{B}| / m_{\alpha}$,

Gyroradius (Larmor): $\rho_{\alpha} = v_{\perp}/\Omega_{\alpha}$

- Possible to reduce dynamics
- Treat gyrating particles as drifting charged rings

Electromagnetic Gyrokinetics

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Governing Equations

ightharpoonup Guiding center phase space distribution function for species s=i,e

$$f_s(\mathbf{X}, \mu, v_{\parallel}, t) : \mathbb{R}^5 \times \mathbb{R} \to \mathbb{R}^+$$

▶ Normalized with number of guiding centers for species *s*:

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{\mathbb{R}^{3}} f_{s}(\mathbf{X}, \mu, v_{\parallel}) d^{3}X B d\mu dv_{\parallel} = N_{s}^{gc}$$

GK Vlasov Equation:

$$\frac{\partial f_s}{\partial t} + \dot{\mathbf{X}} \cdot \frac{\partial f_s}{\partial \mathbf{X}} + \dot{v}_{\parallel} \frac{\partial f_s}{\partial v_{\parallel}} = 0$$

Drift Motions:

$$\dot{\mathbf{X}} = \frac{1}{D} \left[v_{\parallel} \left(\hat{\mathbf{b}}_{0} + \delta \hat{\mathbf{b}} \right) + \frac{m_{s}}{q_{s} B_{0}} v_{\parallel}^{2} \nabla \times \hat{\mathbf{b}}_{0} - \frac{m_{s}}{q_{s} B_{0}} \hat{\mathbf{b}}_{0} \times \left(\frac{q_{s}}{m_{s}} \langle \mathbf{E} \rangle - \mu \nabla B_{0} \right) \right]$$

$$\dot{v}_{\parallel} = \frac{q_{s}}{m_{s} D} \left[\left(\hat{\mathbf{b}}_{0} + \delta \hat{\mathbf{b}} \right) + \frac{m_{s}}{q_{s} B_{0}} v_{\parallel} \nabla \times \hat{\mathbf{b}}_{0} \right] \cdot \left(\langle \mathbf{E} \rangle - \frac{m_{s}}{q_{s}} \mu \nabla B_{0} \right)$$

$$D = 1 + \frac{m_{s}}{q_{s} B_{0}} v_{\parallel} \mathbf{b}_{0} \cdot \nabla \times \mathbf{b}_{0}$$

Electromagnetic Gyrokinetics

Governing Equations

Perturbed Fields:

$$\begin{split} \mathbf{E} &= -\nabla \phi - \frac{\partial A_{\parallel}}{\partial t} \hat{\mathbf{b}}_0 \\ \delta \mathbf{B} &= \nabla \times \left(A_{\parallel} \hat{\mathbf{b}}_0 \right) \end{split}$$

Potential Equations:

$$-\frac{en_0m_i}{q_iB_0^2}\nabla_{\perp}^2\phi = q_i\bar{n}_i - en_e$$
$$-\frac{1}{\mu_0}\nabla_{\perp}^2A_{\parallel} = j_{\parallel i} + j_{\parallel e}$$

Velocity Moments:

$$\bar{n}_{i}(\mathbf{x}) = \int_{-\infty}^{\infty} \int_{0}^{\infty} \left\langle f_{i}(\mathbf{X}, v_{\parallel}, \mu) \delta(\mathbf{X} - \mathbf{x} + \boldsymbol{\rho}_{i}) \right\rangle B d\mu dv_{\parallel}$$

$$n_{e}(\mathbf{x}) = \int_{-\infty}^{\infty} \int_{0}^{\infty} \left\langle f_{e}(\mathbf{X}, v_{\parallel}, \mu) \delta(\mathbf{X} - \mathbf{x}) \right\rangle B d\mu dv_{\parallel}$$

$$j_{\parallel s}(\mathbf{x}) = q_{s} \int_{-\infty}^{\infty} \int_{0}^{\infty} v_{\parallel} \left\langle f_{s}(\mathbf{X}, v_{\parallel}, \mu) \delta(\mathbf{X} - \mathbf{x}) \right\rangle B d\mu dv_{\parallel}$$

Gyrokinetic Vlasov:

$$\frac{\partial f_s}{\partial t} + \dot{\mathbf{X}} \cdot \frac{\partial f_s}{\partial \mathbf{X}} + \dot{v}_{\parallel} \frac{\partial f_s}{\partial v_{\parallel}} = 0$$

Outline:

Background

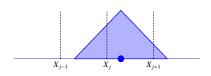
2 Fully Implicit Particle-in-Cell

3 Fluid Preconditioner Mode

Particle-in-Cell Method

Elements of PIC

- ▶ Computational particles: $\mathbf{X}_p, \ v_{\parallel p}, \ \mu_p \ \text{for} \ p=1,2,...,N_P$
- ► Computational mesh: \mathbf{x}_j , $j = 1, 2, ..., N_M$
- Fields and moments defined on mesh: $(n_s, j_{\parallel s})_j$ and $(\mathbf{E}, \delta \mathbf{B})_j$
- ▶ Shape function $S(\mathbf{x})$ communicates between mesh and particle quantities:

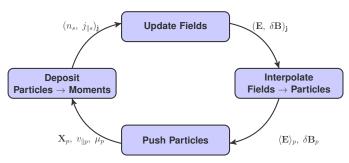


Particle-in-Cell Method

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Computational Cycle

► Typically system is explicitly advanced in time:



- ► A fully implicit scheme advances particles and fields simultaneously each time step. (G. Chen, L. Chacón, D. Barnes, J. Comput. Phys., 2011)
- Requires solution of system of nonlinear equations at each time step.
- Made possible due to a low-dimensional residual formulation (Particles are coupled only through field quantities!)

Implicit Particle-in-Cell

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Discrete Model

Implicitly discretized fields:

$$\begin{split} \mathbf{E}^{n+1/2} &= -\frac{1}{2} \left(\nabla \phi^{n+1} + \nabla \phi^n \right) - \frac{2}{\Delta t} \left(A_{\parallel}^{n+1/2} - A_{\parallel}^n \right) \hat{\mathbf{b}}_0 \\ \delta \mathbf{B}^{n+1/2} &= \nabla \times \left(A_{\parallel}^{n+1/2} \hat{\mathbf{b}}_0 \right). \end{split}$$

Potential equations:

$$\mathcal{L}_{1}\phi^{n+1} = q_{i}\bar{n}_{i}^{n+1} - en_{e}^{n+1}, \qquad \qquad \mathcal{L}_{1} \equiv -\frac{en_{0}m_{i}}{q_{i}B_{0}^{2}}\nabla_{\perp}^{2}$$

$$\mathcal{L}_{2}A_{\parallel}^{n+1/2} = j_{\parallel i}^{n+1/2} + j_{\parallel e}^{n+1/2}, \qquad \qquad \mathcal{L}_{2} \equiv -\frac{1}{\mu_{0}}\nabla_{\perp}^{2}$$

Nonlinear dependence on ϕ^{n+1} and $A_{\parallel}^{n+1/2}$ through particle system:

$$\begin{split} n_s^{n+1} &= n_s(\phi^{n+1}, A_{\parallel}^{n+1/2}) \\ j_{\parallel s}^{n+1/2} &= j_{\parallel s}(\phi^{n+1}, A_{\parallel}^{n+1/2}). \end{split}$$

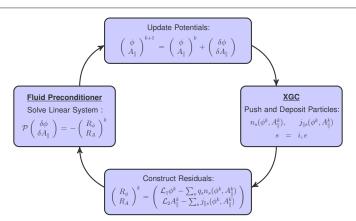
Implicit Particle-in-Cell

PRINCETON PLASMA PHYSICS LABORATORY

Iteration Scheme

► Iteration Scheme:

$$\left(\begin{array}{c} \phi \\ A_{\parallel} \end{array} \right)^{k+1} = \left(\begin{array}{c} \phi \\ A_{\parallel} \end{array} \right)^{k} - \mathcal{P}^{-1} \left(\begin{array}{c} R_{\phi} \\ R_{A} \end{array} \right)^{k}$$



Outline:

Background

2 Fully Implicit Particle-in-Cell

3 Fluid Preconditioner Model

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Basic Model

- ▶ If $P = \mathcal{J}$, Newton's method, however, constructing \mathcal{J} is infeasible.
- Use physics knowledge to postulate a model that captures the linear response of fastest timescales (physics-based preconditioning)

Note:

Approximations made in the preconditioner do NOT affect the converged solution

Fastest timescales come from electron motions parallel to the background magnetic field:

$$\begin{split} \frac{\partial f_e}{\partial t} + \dot{\mathbf{X}} \cdot \frac{\partial f_e}{\partial \mathbf{X}} + \dot{v_{\parallel}} \frac{\partial f_e}{\partial v_{\parallel}} &= 0 \\ \dot{\mathbf{X}} \approx v_{\parallel} \mathbf{b}_0, \quad \dot{v_{\parallel}} \approx -\frac{e}{m_e} E_{\parallel} \end{split}$$

▶ Captures shear Alfvén and Ω_H modes

PRINCETON PLASMA PHYSICS LABORATORY

Basic Model

► Taking velocity moments of GK Vlasov and discretizing in time:

$$\begin{split} n_e^{n+1} - \Delta t \nabla_{\parallel} j_{\parallel e} &= \text{RHS}^n \\ \frac{m_e}{e^2 n_0} j_{\parallel e}^{n+1/2} + \frac{\Delta t}{4} \nabla_{\parallel} \phi^{n+1} + A_{\parallel}^{n+1/2} - \frac{\Delta t}{4} \frac{T_e}{e n_0} \nabla_{\parallel} n_e^{n+1} &= \text{RHS}^n \end{split}$$

Preconditioner matrix equation:

$$\begin{bmatrix} \mathcal{L}_1 & 0 & \mathcal{M} & 0 \\ 0 & \mathcal{L}_2/e & 0 & -\mathcal{M} \\ 0 & 0 & I & -\Delta t B \nabla_{\parallel} B^{-1} \\ \frac{\Delta t}{4} \nabla_{\parallel} & I & -\frac{\Delta t}{4n_0} \left(E_{\parallel} + \frac{T_e}{e} \nabla_{\parallel} \right) & \frac{m_e}{en_0} \end{bmatrix} \begin{bmatrix} \delta \phi \\ \delta A_{\parallel} \\ \delta n \\ \delta j_{\parallel}/e \end{bmatrix} = - \begin{bmatrix} R_{\phi} \\ R_A \\ 0 \\ 0 \end{bmatrix}$$

- $ightharpoonup R_{\phi}$, R_A come from particle system
- \blacktriangleright $\delta\phi$, δA_{\parallel} used to correct ϕ^k , A_{\parallel}^k .

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Anderson Acceleration

- Suppose we wish to solve f(x) = 0, and we have a set of m iterates: x^{l} . l = 1, 2, ..., m.
- Select a linear combination in a way to reduce the residual as much as possible (if $\mathbf{f} = A\mathbf{x} \mathbf{b}$).

$$\min_{\alpha \in \mathbb{R}^m} \left\| \sum_{j=0}^{m-1} \alpha_{j+1} \mathbf{f}^{k-j} \right\|^2, \quad \text{where } \sum_{j=1}^m \alpha_j = 1, \quad \mathbf{f}^l \equiv \mathbf{f}(\mathbf{x}^l)$$

► The the new iterate is:

$$\mathbf{x}^{k+1} = \sum_{j=0}^{m-1} \alpha_{j+1} \mathbf{x}^{k-j}$$

- Related to GMRFS
- D. G. Anderson, J. Assoc. Comput. Mach., 12 (1965), pp. 547-560

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Particle-Mesh Interactions

- ► Fluid preconditioner converges too slowly to be practical. We need to understand what missing effects could influence fast timescale behaviors.
- ightharpoonup Field data is interpolated to particles and particle data is deposited to mesh ightharpoonup fields are effectively smoothed in moment responses.
- In XGC, interpolation and deposition are done in field-line-following coordinates. A directional smoothing operator $\mathcal S$ to mimic this effect can be derived from PIC equations.

$$\begin{bmatrix} \mathcal{L}_1 & 0 & \mathcal{M} & 0 \\ 0 & \mathcal{L}_2/e & 0 & -\mathcal{M} \\ 0 & 0 & I & -\Delta t B \nabla_{\parallel} B^{-1} \\ \frac{\Delta t}{4} \mathcal{S} \nabla_{\parallel} & \mathcal{S} & -\frac{\Delta t}{4} \frac{T_e}{e n_0} \nabla_{\parallel} & \frac{m_e}{e n_0} \end{bmatrix} \begin{bmatrix} \delta \phi \\ \delta A_{\parallel} \\ \delta n \\ \delta j_{\parallel}/e \end{bmatrix} = - \begin{bmatrix} R_{\phi} \\ R_A \\ 0 \\ 0 \end{bmatrix}.$$

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Particle-Mesh Interactions



Δt	$4.36 \times 10^{-8} \text{ s}$
n_0	$1.0 \times 10^{19} \text{ m}^{-3}$
T_e	$2.0 \; \mathrm{keV}$
m_e	$9.11 \times 10^{-30} \text{ kg}$
m_i	$1.67 \times 10^{-27} \text{ kg}$

$\frac{v_A \Delta t}{\Delta s}$	1.7
$\frac{v_{th}\Delta t}{\Delta s}$	0.8

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Three Field Model

 \blacktriangleright We are motivated to examine the term involving T_e :

$$\begin{bmatrix} \mathcal{L}_1 & 0 & \mathcal{M} & 0 \\ 0 & \mathcal{L}_2/e & 0 & -\mathcal{M} \\ 0 & 0 & I & -\Delta t B \nabla_{\parallel} B^{-1} \\ \frac{\Delta t}{4} \mathcal{S} \nabla_{\parallel} & \mathcal{S} & -\frac{\Delta t}{4} \frac{T_e}{e n_0} \nabla_{\parallel} & \frac{m_e}{e n_0} \end{bmatrix} \begin{bmatrix} \delta \phi \\ \delta A_{\parallel} \\ \delta n \\ \delta j_{\parallel}/e \end{bmatrix} = -\begin{bmatrix} R_{\phi} \\ R_{A} \\ 0 \\ 0 \end{bmatrix}.$$

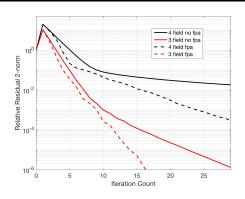
- ▶ The "red-black" mode is in the null space of a central differenced ∇_{\parallel} operator.
- ► Reformulate by eliminating third equation:

$$\begin{bmatrix} \mathcal{L}_1 & 0 & \Delta t \mathcal{M} B \nabla_{\parallel} B^{-1} \\ 0 & \mathcal{L}_2 / e & -\mathcal{M} \\ \frac{\Delta t}{4} \mathcal{S} \nabla_{\parallel} & \mathcal{S} & \frac{m_e}{e n_0} - \frac{\Delta t^2 T_e}{4e n_0} B \nabla_{\parallel}^2 B^{-1} \end{bmatrix} \begin{bmatrix} \delta \phi \\ \delta A_{\parallel} \\ \delta j_{\parallel} / e \end{bmatrix} = - \begin{bmatrix} R_{\phi} \\ R_A \\ 0 \end{bmatrix},$$

▶ Standard three-point stencil for second order operator sees the "red-black" mode.

PPPL PRINCETON PLASMA PHYSICS LABORATORY

Three Field Model

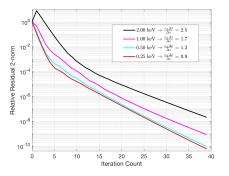


Δt	$4.36 \times 10^{-8} \text{ s}$
n_0	$1.0 \times 10^{19} \text{ m}^{-3}$
T_e	$2.0 \; \mathrm{keV}$
m_e	$9.11 \times 10^{-31} \text{ kg}$
m_i	$1.67 \times 10^{-27} \text{ kg}$

$\frac{v_A \Delta t}{\Delta s}$	1.7
$\frac{v_{th}\Delta t}{\Delta s}$	2.5

Back to the Particle-in-cell model

Convergence is still limited by "red-black" mode, but improves at lower temperatures.



- > Spatial discretizations in the fluid equations have their origin in particle motions
- We are operating in a regime where electrons can cross a few poloidal planes over a time step (Moderate to large $v_{th}\Delta t/\Delta s$).

Back to the Particle-in-cell model

- Sub-cycled electrons interpolate field data as they travel during a time step, carrying this information long distances
- ► It's possible to analyze these effects by returning to the PIC equations (Work in progress)
- We want to use this analysis to guide the choice of parallel gradient discretizations in the fluid model to include some nonlocality.

Outline:

Background

2 Fully Implicit Particle-in-Cell

3 Fluid Preconditioner Mode

- Working to develop electromagnetic capability in XGC
- ► A fully implicit PIC method can overcome numerical difficulties associated with electromagnetic gyrokinetics (cancellation problem, inductive field component)
- ► Requires solution of nonlinear system of equations at each timestep → an effective precondition is essential!
- Several improvements have been made to reduce number of iterations needed for convergence
- Developing an understanding of the subtleties of our system and using this understanding to guide further improvements

Questions?

Please Ask!